A Comparative Study of Some Methods of Definite Numerical Integration Using Maple Software

Authors

  • Elham A. Ghaith Department of Mathematics, Faculty of Science, Alasmarya Islamic University, Zliten, Libya.
  • Najla J. Alawiss Department of Mathematics, Faculty of Science, Alasmarya Islamic University, Zliten, Libya.

Keywords:

Numerical Integration, Newton-Cotes, Trapezoidal Rule, Simpson’s Rule, Romberg Method

Abstract

Numerical Integration is defined as how to find the approximate value of a given integral it is usually resorting to when there is difficulty or it is not possible to calculate the value of the integral using the usual methods, or when the formula of the function is not known but its values are known at a finite number of points. This study aims to compare between three numerical integration methods which are (the Trapezoid Method, the Simpson’s Method and Romberg's Method) to get to the best method in terms of accuracy of results and speed of convergence to exact value. And it also aims to effect of increasing the number of division of the period and the integration limit sign and type of the mathematical form of the function on the accuracy. The comparison was completed by using the Maple 18 Program in calculating the exact and approximate values (rounded to nine decimal digits after the comma) and calculate the absolute error of a number of single integrals of various functions in mathematical forms and continuing in its periods of integration. From the results reached is that the Trapezoid method have their results converging to the exact value of the integrals of trigonometric and multi-definition functions faster than other methods. As for the integrals of other functions (that are being studied) the Romberg's method is the best method and the Simpson's method comes in second place. Also increasing the number of division of the period does not always lead to an increase in the accuracy of the results for all integrals, And that when the function curve falls in the first quadrant, the methods of numerical integration gives very accurate results compared to whether the function curve falls in the first and second quadrants together or in the second quadrant which we got the lowest accuracy of the methods. 

Downloads

Download data is not yet available.

References

أولا: المراجع باللغة العربية

السيد، أبو بكر أحمد (2012). الطرق العددية والتحليل العددي (ط.1). مكتبة الفلاح.

الطائي، كمال حميد (2010). دراسة مقارنة لطرق التكامل العددي المحدود باستخدام برنامج MATLAB. مجلة كلية التراث الجامعة, (07),86-122..

جاكس، إيان؛ وجد، كولن. (1992). التحليل العددي. ترجمة: علي ابر اهيم و محمد النجار). منشورات جامعة الفاتح.

خضر، سليمة محمد (2018). استخدام بعض الطرق في إيجاد الحلول العددية للتكاملات المفردة. المجلة العلمية لكلية التربية جامعة مصراتة، 2(11)،511-527.

صبح، محمد منصور؛ الحربي، صالح بن منيع (2006). التحليل العددي وطرق حسابه العددية. مكتبة الرشد

علوه، حنان عبد الرحمن؛ عبدالحق، منى حامد (2017). التكامل باستخدام الطرق العددية. مشروع تخرج جامعة سبها.

فايرس، دوغلاس؛ بوردن، ريتشارد (2001). التحليل العددي. ترجمة: رمضان جهيمة و كمال أبودية). ELGA

لوكة، هناء المنير أحمد؛ أبو بكر، منى السنوسي محمد (2020). تأثير الشكل البياني للدالة على نتائج التكامل العددي المحدود للدوال الرياضية. مجلة العلوم التطبيقية، 3(5), 118-138.

ثانيا: المراجع باللغة الإنجليزية

Chowdhury, T.A., Islam, T., Mujahid, A.A., & Ahmed, M.B. (2021). The Periodicity of the Accuracy of Numerical Integration Methods for the Solution of Different Engineering Problems. Journal of Engineering Advancements, 02(04), 203- 216.

Epperson, J. F. (2013). An Introduction to Numerical Methods and Analysis (2^nd ed.). John Wiley & Sons.

Winnicka, A. (2019). Comparison of numerical integration methods. In SYSTEM (pp. 1-4).‏

Downloads

Published

2024-12-31

Conference Proceedings Volume

Section

Track Five: Basic Sciences

How to Cite

Ghaith, E. A., & Alawiss, N. J. (2024). A Comparative Study of Some Methods of Definite Numerical Integration Using Maple Software. The Annual Scientific Conference for Under and Postgraduate Students at the University., 2, 5. 72-86. https://conf.asmarya.edu.ly/index.php/scupgs/article/view/919

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.