Enhancement of Hydrogen Storage Process Using Heat Pipe
Keywords:
Hydrogen storage, Heat pipe, Metal hydride, Absorption time, Storage rateAbstract
Heat transfer from/to the metal hydride bed is a critical factor affecting the performance of metal hydride storage tanks (MHSTs for short). This study examined the effect of heat pipe on the metal hydride tank by means of heat management. The experimental study explains the use of heat pipe for enhancement the heat transfer in MHSTs, which built using LaNi4.75Al0.25 as the storage media and under various hydrogen pressure supply in the range of 2 to10 bar. This study also presents comparisons between the two different MHSTs which are designed with and without heat pipe. Two configurations of metal hydride tanks are considered and consisted of tubular cylindrical tanks with same base dimensions. The first one is a closed cylinder that exchanges heat through its lateral and base surfaces by means cool with natural convection. Heat pipe is made of copper–methanol combination and situated along the axis of the second reactor. Results show that the usage of heat pipe can be a good choice to increase hydrogen storing performance. The absorption time at 10 bar hydrogen inlet pressure was reduced more than 30%, and the mass of hydrogen storage increased by approximately 10% - 15%.
Downloads
References
M. C. McManus, "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy. 2012, vol. 93, pp. 288-295. DOI: https://doi.org/10.1016/j.apenergy.2011.12.062
C. Chung, S.-W. Yang, C.-Y. Yang, C.-W. Hsu, and P.-Y. Chiu, "Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer," Applied energy. 2013, vol. 103, pp. 581-587. DOI: https://doi.org/10.1016/j.apenergy.2012.10.024
A. Demircan, M. Demiralp, Y. Kaplan, M. Mat, and T. Veziroglu, "Experimental and theoretical analysis of hydrogen absorption in LaNi5–H2 reactors," International Journal of Hydrogen Energy. 2005, vol. 30, pp. 1437-1446. DOI: https://doi.org/10.1016/j.ijhydene.2005.02.002
Y. Kaplan, "Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors," International Journal of Hydrogen Energy. 2009, vol. 34, pp. 2288-2294. DOI: https://doi.org/10.1016/j.ijhydene.2008.12.096
H. Dhaou, A. Souahlia, S. Mellouli, F. Askri, A. Jemni, and S. B. Nasrallah, "Experimental study of a metal hydride vessel based on a finned spiral heat exchanger," international journal of hydrogen energy, 2010, vol. 35, pp. 1674-1680. DOI: https://doi.org/10.1016/j.ijhydene.2009.11.094
H. Dhaou, N. B. Khedher, S. Mellouli, A. Souahlia, F. Askri, A. Jemni, et al., "Improvement of thermal performance of spiral heat exchanger on hydrogen storage by adding copper fins," International Journal of Thermal Sciences. 2011, vol. 50, pp. 2536-2542. DOI: https://doi.org/10.1016/j.ijthermalsci.2011.05.016
A. Jemni, S. B. Nasrallah, and J. Lamloumi, "Experimental and theoretical study of ametal–hydrogen reactor," International Journal of Hydrogen Energy. 1999, vol. 24, pp. 631-644. DOI: https://doi.org/10.1016/S0360-3199(98)00117-7
K. Aldas, M. D. Mat, and Y. Kaplan, "A three-dimensional mathematical model for absorption in a metal hydride bed," International Journal of Hydrogen Energy. 2002, vol. 27, pp. 1049-1056. DOI: https://doi.org/10.1016/S0360-3199(02)00010-1
S. Mellouli, F. Askri, H. Dhaou, A. Jemni, and S. B. Nasrallah, "A novel design of a heat exchanger for a metal-hydrogen reactor," International Journal of Hydrogen Energy. 2007, vol. 32, pp. 3501-3507. DOI: https://doi.org/10.1016/j.ijhydene.2007.02.039
S. Mellouli, F. Askri, H. Dhaou, A. Jemni, and S. B. Nasrallah, "Numerical study of heat exchanger effects on charge/discharge times of metal–hydrogen storage vessel," International Journal of Hydrogen Energy. 2009, vol. 34, pp. 3005-3017. DOI: https://doi.org/10.1016/j.ijhydene.2008.12.099
A. Souahlia, H. Dhaou, F. Askri, M. Sofiene, A. Jemni, and S. B. Nasrallah, "Experimental and comparative study of metal hydride hydrogen tanks," international journal of hydrogen energy. 2011, vol. 36, pp. 12918-12922. DOI: https://doi.org/10.1016/j.ijhydene.2011.07.022
A. Souahlia, H. Dhaou, F. Askri, S. Mellouli, A. Jemni, and S. B. Nasrallah, "Experimental study and characterization of metal hydride containers," international journal of hydrogen energy. 2011, vol. 36, pp. 4952-4957. DOI: https://doi.org/10.1016/j.ijhydene.2011.01.074
M. Kayfeci, F. Bedir, and H. KURT, "Experimental investigation of the effects of vessel design and hydrogen charge pressure on metal hydride based hydrogen storage parameters," Journal of Thermal Science and Technology. 2014, vol. 34, pp. 83-90.
S. Mellouli, F. Askri, H. Dhaou, A. Jemni, and S. B. Nasrallah, "Numerical simulation of heat and mass transfer in metal hydride hydrogen storage tanks for fuel cell vehicles," International Journal of Hydrogen Energy. 2010, vol. 35, pp. 1693-1705. DOI: https://doi.org/10.1016/j.ijhydene.2009.12.052
F. Askri, M. B. Salah, A. Jemni, and S. B. Nasrallah, "Optimization of hydrogen storage in metal-hydride tanks," International journal of hydrogen Energy. 2009, vol. 34, pp. 897-905. DOI: https://doi.org/10.1016/j.ijhydene.2008.11.021
E. S. Kikkinides, M. C. Georgiadis, and A. K. Stubos, "On the optimization of hydrogen storage in metal hydride beds," International Journal of Hydrogen Energy. 2006, vol. 31, pp. 737-751. DOI: https://doi.org/10.1016/j.ijhydene.2005.06.021
C. Veerraju and M. R. Gopal, "Heat and mass transfer studies on elliptical metal hydride tubes and tube banks," international journal of hydrogen energy. 2009, vol. 34, pp. 4340-4350. DOI: https://doi.org/10.1016/j.ijhydene.2009.03.022
B. D. MacDonald and A. M. Rowe, "Impacts of external heat transfer enhancements on metal hydride storage tanks," International Journal of Hydrogen Energy. 2006, vol. 31, pp. 1721-1731. DOI: https://doi.org/10.1016/j.ijhydene.2006.01.007
J. A. Ben Nasrallah S, "Heat and mass transfer model in metal-hydrogen reactor," Int. J. Hydrogen Energy. 1994, vol. 20, pp. 197 - 203. DOI: https://doi.org/10.1524/zpch.1994.183.Part_1_2.197
A. Jemni and S. B. Nasrallah, "Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor," International Journal of Hydrogen Energy. 1995, vol. 20, pp. 881-891. DOI: https://doi.org/10.1016/0360-3199(94)00115-G
F. Laurencelle and J. Goyette, "Simulation of heat transfer in a metal hydride reactor with aluminium foam," International Journal of Hydrogen Energy. 2007, vol. 32, pp. 2957-2964. DOI: https://doi.org/10.1016/j.ijhydene.2006.12.007
S. Levesque, M. Ciureanu, R. Roberge, and T. Motyka, "Hydrogen storage for fuel cell systems with stationary applications—I. Transient measurement technique for packed bed evaluation," International Journal of Hydrogen Energy. 2000, vol. 25, pp. 1095-1105. DOI: https://doi.org/10.1016/S0360-3199(00)00023-9
S. Mellouli, H. Dhaou, F. Askri, A. Jemni, and S. B. Nasrallah, "Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger," International Journal of Hydrogen Energy. 2009, vol. 34, pp. 9393-9401. DOI: https://doi.org/10.1016/j.ijhydene.2009.09.043
A. Jemni and S. B. Nasrallah, "Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor," International Journal of Hydrogen Energy. 1995, vol. 20, pp. 43-52. DOI: https://doi.org/10.1016/0360-3199(93)E0007-8
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2021 فوزي علي محمد الهمشري، محمد أحمد عيسي، صلاح علي العلوص

This work is licensed under a Creative Commons Attribution 4.0 International License.