SIMULATION OF THE EFFECT OF RACKS ON COILED TUBING USING ANSYS

،،،

Authors

  • M. Benaros Mechanical & Industrial Engineering Department, Faculty of Engineering, Alasmarya Islamic University, Zliten, Libya

Keywords:

Mechanical properties, Stress intensity factor, cracks, Striations, Coiled tubing, Ansys

Abstract

One of the main causes of failure and breakdown Coiled Tubing (CT) is often cracks. In this study, the Stress Intensity Factor (SIF)  was found using ANSYS program and it was compared with the Stress Intensity Critical Factor  of (CT). This is to determine the extent to which pipes that carry small cracks can be used or not. Simulations were carried out on CT-130 Coiled Tubing containing cracks. A relationship is plotted between   and (a/t). The results obtained were identical with the results of the research ( Cassa, A. M. (2010), ) Alshoaibi, A. M. (2019). The results of the tensile and bending strength on samples bearing transverse cracks show that the use of loads more than 60 KN and crack depth greater than 35% of the wall thickness causes the pipe to enter the plastic area, where the possibility of collapse is high. In the case of longitudinal faults, they are considered more stable, as the results show that the bearing strength reaches 150 KN when the fault depth is less than 35%. On the other hand, it can be said that a collapse of the tube occurs when . At levels where it is the material will deform plastically to absorb the applied force. The pipe can be operated in conditions where  taking into account a safety ratio of not less than 20%

Downloads

Download data is not yet available.

References

Padron t, craig sh. Past and present coiled tubing string failures - history and recent new failures mechanisms spe/icota coiled tubing and well intervention conference and exhibition. Spe 189914-ms 2018. DOI: https://doi.org/10.2118/189914-MS

Boumali a, brady me, ferdiansyah e, kumar s, van gisbergen s, kavanagh t, ortiz az, ortiz ra, pandey a, pipchuk d and wilson s: “coiled tubing: innovative rigless interventions,” oilfield review 17, no. 4 (winter 2005/2006): 29–41.

Coiled tubing manual , tes, nov ctes 2013, 3770 pollok drive conroe, www.nov.com/ctes.

Liu bing, et al. Mechanical properties of a coiled tubing blowout preventer ram in the shearing process. Natural gas industry b 6 (2019) 594e602. DOI: https://doi.org/10.1016/j.ngib.2019.04.005

Al Laham, S. and S. I. Branch (1998). Stress intensity factor and limit load handbook, British Energy Generation Limited.

Tada, P. (2001). Paris, and GR Irwin. The Stress Analysis of Cracks Handbook: 2.25. DOI: https://doi.org/10.1115/1.801535

Nariman Saeed. PhD Thesis. Composite Overwrap Repair System for Pipelines –Onshore and Offshore Application. The University of Queensland,2015

Benaros, M., & Alhwaige, A. A. Modeling and Simulation for Utilisation of Chitosan-Polybenzoxazine Crosslinked Polymers for Pipeline Transportation of Crude Oil.‏

Anderson, T. L., 1995, .Fracture Mechanics, Fundamentals and Applications., CRC, Ch. 9.

Saxena, S., and Ramachandra Murthy, D. S., 2007, .On the Accuracy of Ductile Fracture Assessment of Through-Wall Cracked Pipes. Eng. Struct., 29, pp. 789–801. DOI: https://doi.org/10.1016/j.engstruct.2006.05.024

J. Wainstein, J. Perez Ipina, Fracture Toughness of HSLA Coiled Tubing Used in Oil Wells Operations, Journal of Pressure Vessel Technology February 2012 DOI: 10.1115/1.4004569. DOI: https://doi.org/10.1115/1.4004569

Гидан, С. Б., Бен, А. М., Кудашев, Р. Р., & Наумкин, Е. А. (2012). Оценка состояния гибких насосно-компрессорных труб с применением численных методов расчета. In Развитие инновационной инфраструктуры университета (pp. 24-26).

Гидан, С. Б., Бен, А. М., & Наумкин, Е. А. (2012). Оценка усталостной прочности материала гибких насосно-компрессорных труб. In 63-я научно-техническая конференция студентов, аспирантов и молодых ученых УГНТУ (pp. 266-267).

Liu, Y., Xian, L. Y., Yu, H., Li, H. B., & Wei, F. (2019). Properties of CT130 Grade Coiled Tubing. In Materials Science Forum (Vol. 944, pp. 1082-1087). Trans Tech Publications Ltd.‏ DOI: https://doi.org/10.4028/www.scientific.net/MSF.944.1082

Soboyejo, W. O. (2003). "11.6.2 Crack Driving Force and Concept of Similitude". Mechanical properties of engineered materials. Marcel Dekker. ISBN 0-8247-8900-8. OCLC 300921090.

Raju, I.S. and Newman, J.C., (1982), “Stress-intensity factors for internal and external surface cracks in cylindrical vessels”, Journal Of Pressure Vessel Technology-Transactions Of The ASME, 104(4), 293-298. DOI: https://doi.org/10.1115/1.3264220

Anderson, T.L., (1991), “Fracture mechanics: fundamentals and applications”, CRC Press, Boca4 Raton, Florida.

Vytyaz, O., Hrabovskyi, R., & Bezaniuk, Y. (2020). Assessment of danger of long term operated coiled tubing failure. AGH Drilling, Oil, Gas, 37(4).‏

Cassa, A. M., Van Zyl, J. E., & Laubscher, R. F. (2010). A numerical investigation into the effect of pressure on holes and cracks in water supply pipes. Urban Water Journal, 7(2), 109-120.‏ DOI: https://doi.org/10.1080/15730620903447613

Sharan, G., Lakshminarayana, H. V., VS, A. K., & Viswanath, N. Stress Intensity Factors for Circumferential Through Wall Crack In A Cylindrical Shell With Tori-Spherical End Closures. structure, 1, 3.‏

Downloads

Published

2021-12-31

Conference Proceedings Volume

Section

المحور الثاني: الهندسة الميكانيكية والصناعية وهندسة المواد

How to Cite

Benaros, M. (2021). SIMULATION OF THE EFFECT OF RACKS ON COILED TUBING USING ANSYS: ،،،. Conference On Engineering Science and Technology, 6(5، مجلة الجامعة الأسمرية), 381-370. https://conf.asmarya.edu.ly/index.php/cest2021/article/view/127