
Journal of Alasmarya University: Basic and Applied Sciences
Vol. 6, No. 5, December 2021, Special Issue for Forth Conference on
Engineering Science and Technology (CEST-2021)

 الأسبسية والتطبيقيةمجلة الجبمعة الأسمرية: العلوم
 (CEST-2021عدد خاص بالمؤتمر الرابع للعلوم الهندسية والتقنية) ،0202ديسمبر ،5العذد ، 6لمجلذ ا

 ــ

816
 ISSN: 2706-9524 (Print) ISSN: 2706-9532 (Online)

Combining the Forwarding with Delay Slots Operations to Avoid
the Branch Misprediction Penalty in Superscalar Processors

Ali Hudoud

Department of Computer, Faculty of Engineering, Azzytuna University, Tarhuna, Libya

ABSTRACT

Using pipeline system in modern possessors has contributed
significantly to the development of processors performance by
increasing its speed faster than before, where CPI approaches to 1,
however, this technique accompanied many problems, one of them
called Branch Misprediction penalty due to control hazard, most of
them occurs when implementing dynamic branch prediction. For every
five jump commands of a program there is jump command, which
causes interruption of the execution of orders through pipeline
systems. There are many proposed previews studies, such as
Dynamic Branch Prediction and Control Speculation, NTB Branch
Predictor: Dynamic Branch Predictor for High-Performance Embedded
Processors. This paper presents a new mechanism to combine
forwarding and delay slots together to avoid a Branch Misprediction
Penalty in Superscalar Processors, it's got better results.

Keywords:
Branch Misprediction Penalty.

Clock Cycle Per Instruction
(CPI).
Control hazard Dynamic
Branch Prediction
Million Instruction Per
Second (MIPS).

Author Email: ali.amary81@yahoo.com

1 INTRODUCTION

In order to make the system acts as a sustainable pipeline, it must be fetched with new

instruction in every new clock cycle. whereas within these instructions there is a branch

instruction must be knowing its direction in the second stage" ID" [1,2,3,4,5]. However, until

the branch is resolved, the problem occurred due to unknowing from where the instruction

will be fetched. This delay of calculating the address of the next instruction is known as a

control hazard [6,7,8,9]. It occurs due to the dependency in control operations. The

instructions that depend on the branch cannot be moved in front of this branch, that is, they

cannot come in the line to execute orders until the direction of the branch can be controlled.

Nor can these non-branch-dependent instructions be moved for the same reason. In this

research, work has been done to limiting the problems of control hazard, the most important

of which is known as branch misperception. This paper is organized as follows: Section Ⅱ,

presented related work includes the most important methods of solutions, previous treatments

and some recent scientific papers were mentioned. Section Ⅲ, presented research method,

which will explain one of the most important problems and then the most important elements

used in the mechanism of this research. Section Ⅳ, presented proposal methodology, during

Combining the Forwarding with Delay Slots Operations to Avoid the Branch Misprediction Penalty in

Superscalar Processors

817
 Volume (6) Issue 5 (December 2021) (0202ديسمبر) 5 (العذد6المجلذ)

which the proposed mechanism was implemented is to combining both forwarding and delay

slots operations in order to obtain the best result. Section Ⅴ, presented results and discussion.

Finally, section Ⅵ, presented conclusion.

2 RELATED WORK

A lot of the researches has been done to find solutions to problem branch misprediction

penalty in superscalar processors and all pipelined systems, focusing on improvements on the

physical side, such as research entitled ''Dynamic Branch Prediction and Control

Speculation''[2]. In the last two decades in general has focused on improving prediction

through the most important of them as prediction scheme, aliasing in gglobal ppredictors,

hhybrid ppredictors, third-level of aadaptively. One of these researches entitled '' combing

static and dynamic branch prediction to reduce destructive aliasing'', the prediction rate was

75% for a simple branch prediction and 14% for a very aggressive hybrid predictor for a

certain program [10]. In other, direct relevant research in recent years such as comparative

study on behaviour based dynamic branch prediction using machine learning, January 2019, it

concludes that the use of machine learning provides competitive results. However, the use of

machine learning doesn’t help predict all conditional branch behaviours, and looking at the

results of this research, most of them work to improve the accuracy of the dynamic prediction

by developing the physical part, however, these improvements remain undefinite results to

avoid all predictive errors. Other studies have also found software solutions that have the

advantage of being less expensive than research requiring physical development, most

important of these software-developed methods is what's known as forwarding operation and

delay slots operation, They were used separately and were effective, but only used to avoid

data hazard, it has achieved excellent results by taking advantage of the time it takes for a

dynamic forecaster to know its purpose and execute orders that have nothing to do with

jumping. Based on the results of previous studies, this research has been conducted, both

forwarding operation and delay slots operation has been combined to get better result, that's

by avoiding control hazard.

3 RESEARCH METHOD

This section was divided into three parts as follows.

3.1 PIPELINE HAZARDS AND STALLING OPERATION

The flow of data values takes place between the instructions that accomplish the result and the

instructions require the result, since it is the instructions that determine the means from which

the required data will be brought through a dynamic guidance mechanism for branch [3]. In

the MIPS system and all of systems that operate as a pipeline mechanism, three cycles will be

lost in the time after the implementation phase, thus the direction of the branch can be

accurately known as this example described in figure (1). The branch penalty is analysed as a

Ali Hudoud

818
 Journal of Alasmarya University: Basic and Applied Sciences الأساسية والتطبيقيةمجلة الجبمعة الأسمرية: العلوم

function of a relative number of branch instructions executed and probability that a branch is

taken [8]. The penalty for the direction phase can be reduced in the implementation phase if

the hardware is developed.

Figure 1. Control hazard in branches three stage (3cycles).

Memory protection violation may be accrued at executing instruction xor before beq result.

The jump to the L1 address after checking the zero address is made by the branch instruction,

and another exception will occur if the command continues to be executed. This needs two

operations early, first one is “computing the branch target address" and "evaluating the branch

decision earlier than usual".

Change the location of the branch adder to Instruction Decoding stage (ID) instead of

Execution stage (EX), because the Program Counter (PC) value in the “IF-ID” pipeline

register already exist; address computation of the branch target for all instructions will be

accomplished by comparing the two registers in ID by different ways such as ORing to see if

equal, to use it when required. To support the improvement of the pipeline performance,

forwarding mechanism and hazard detection hardware has been added [4].

To get rid of control hazard problems, there’re two ways:

 1. Predicting branch behavior (taken or not taken).

 a. Recruitment of compiler for Static prediction.

 b. Adding hardware solution for dynamic prediction.

2. Stall should be performed until the direction of the branch is known.

 To implement the first way, the next steps must be followed [4,11]:

 not taken

Combining the Forwarding with Delay Slots Operations to Avoid the Branch Misprediction Penalty in

Superscalar Processors

819
 Volume (6) Issue 5 (December 2021) (0202ديسمبر) 5 (العذد6المجلذ)

if not taken branch is assumed: the condition evaluated as false, where the registers read a

next instruction and known if it is "branch or no" during 2
rd

 stage "ID" Instruction Decoding

stage of the next instruction, and clearing the pipeline if the branch is assessed as true.

 taken

 If taken branch: the condition evaluated as true, where the registers read a next instruction

and known if it's "branch or no" during 1rd stage "IF" Instruction Fetch stage of the next

instruction, just worked with especial processors. i.e., no delay, however, it cannot work with

MIPS systems (5 stages) [12].

 Delay branch.

For more operant solution.

A processing can be performed to a conditional branch instructions as in the following steps:

1- Recognition of conditional branch.

2- Determine whether branch (taken - not taken)

3- Determine the branch target.

4- If branch taken will be redirected instruction fetch.

3.2 FORWARDING OPERATION

Data forwarding is employed as an optimizer in pipelined processors in order to limit a

deficits that has been caused by pipeline stalls which would potentially arise because of data

hazard as the current progression is timely linked with results of previous unfinished process

[7]. The result is forwarded directly to Arithmetic Logic Unit directly, so that, the results can

be used, and there is no need to wait for the results from the register file when it is restored.

Forwarding mechanism operation as follows [9, 12, and 13]:

a) Control starts in IF/ID buffer.

b) The EX, MEM, and WB stages controlled by ID/EX buffer, while executing control

for the EX-stage.

c) The MEM and WB stages controlled by EX/MEM buffer, while executing control for

the MEM stage.

d) The WB stage controlled by MEM/WB buffer.

Example: sequence of instructions in pipeline before forwarding operation.

Table 1. Before forwarding

 1 2 3 4 5 6 7

ADD R1, R3, R2 IF ID_add EX MEM WB

SUB R5, R4, R1 IF ID_sub EX MEM WB

AND R8, R1, R7 IF ID_and EX MEM WB

Ali Hudoud

828
 Journal of Alasmarya University: Basic and Applied Sciences الأساسية والتطبيقيةمجلة الجبمعة الأسمرية: العلوم

The main idea of the forwarding in this example is that SUB does not need to ADD result

until the result is actually obtained, while it has to be actual when the subtraction requires this

result. i.e. if the result can be passed from (EX/MEM register) for ADD to (ALU input latch)

for SUB then, no need to use a stall, and method it works, as this example turns out, which is

as follows [4]:

- The result of EX/MEM always fed back from ALU input latches.

- If the hardware of forwarding discovers that the previous ALU value matches the

current, the forwarded result to ALU input instead of the value from the register file.

There are tree paths to the new input, and three extra inputs to perform this operation on each

ALU multiplexer.

The path corresponds to forwarding of:

(a) End of EX depends on the ALU output.

(b) End of memory depends on ALU output.

 (c) End of MEM depends on the memory output.

The following example will be executed correctly using only stalls, and without forwarding.

Table 2. without forwarding

 1 2 3 4 5 6 7 8 9

ADD R1, R3, R2 IF ID_add EX MEM WB

SUB R5, R4, R1 IF stall Stall ID_sub EX MEM WB

AND R8, R1, R7 stall Stall IF ID_and EX MEM WB

As in the above example, the results are required to be forwarded not just from the previous

instruction immediately, but also instructions could have started three cycles earlier. Since the

forwarding can be as follows "from MEM/WB latch to ALU input ", so it can execute the

code sequence without stalls:

- First forwarding is for R1 value from EX_add to EX_sub .

- Second forwarding is for R1 value from MEM_add to EX_and

Table 3. forwarding without stalls

 1 2 3 4 5 6 7

ADD R1, R3, R2 IF ID_add EX MEM WB

SUB R5, R4, R1 IF ID EX_sub MEM WB

AND R8, R1, R7 IF ID EX_and MEM WB

Combining the Forwarding with Delay Slots Operations to Avoid the Branch Misprediction Penalty in

Superscalar Processors

821
 Volume (6) Issue 5 (December 2021) (0202ديسمبر) 5 (العذد6المجلذ)

The results can be forwarded from the output of one unit to the input of other units instead of

the output of one unit to the input of the same unit only.

3.3 BRANCH DELAY SLOTS

Placing branch instructions in the instruction set is one way to reduce the number of idle

cycles associated with a branch with a case taken in a pipeline processor, so that the next

instructions are in case they follow up immediately after the branch instructions, regardless of

whether the branch result has been taken or not. [4,13,14,15].

To put instructions in so-called the delay slots, there are three ways [4], as explained in the

following:

(a) When branch is not taken.

(b) Put it before branch instruction in ordering implantation.

(c) From the target address, if a branch is taken.

If the conditional branch instructions are taken, they do not execute the instructions in the

delay period, and MIPS processors execute the branch or jump instruction and the delay time

instruction as an indivisible unit. [12]. The jump or branch instructions are not implemented

in the event of an exception as a result of the execution of the delay slots instructions, and it

appears that the exception was due to jumping or branch instructions. The compiler places no

operations in the delay slot when it does not find appropriate instructions. In the pipeline

processor system, the compiler sets a specific number of delays for each type of jump. The

number of delay slots remains unspecified and as few as possible for each type of jump. The

compatible processor uses a number compatible with branch delays to exploit the difference

in predictability of different types of jumps and branches. Many types of jumps have switched

their target addresses with varying numbers of delay slots. Intelligent translators/compilers

have the potential to generate more efficient code than processors that have a constant number

of delays for all types of jumps, leading to better processor performance. [4]. If the interpreter

does not find the appropriate instructions to fill the delay period. It's going to fill it no_op [6].

Ali Hudoud

822
 Journal of Alasmarya University: Basic and Applied Sciences الأساسية والتطبيقيةمجلة الجبمعة الأسمرية: العلوم

Figure 2. Branch delay slots cases

- In the case (a), when a branch is not taken, the Branch Always

helpful when possible.

 But it's not possible if ADD R2, R1, R3.

- In the case (b) from the target: helps whenever the branch is

taken.

- In case (c) from fall through: helps whenever branch is not taken.

4 PROPOSAL METHODOLOGY

At a conditional branch in a taken case, the dynamic branch prediction

mechanism acts as main mechanism that is used to determine the target to which

the branch prediction will be launched. Branch Misprediction penalty maybe be

accrue. This problem is costing us more time which negatively affects the

performance of the processor. Previously, a lot of researches introduced

different methods to limiting this problem, most of them devoted to improve the

prediction value (taken or not taken), through improving and developing branch

predictors that employed to improve the flow in the instruction pipeline such as

Combining the Forwarding with Delay Slots Operations to Avoid the Branch Misprediction Penalty in

Superscalar Processors

823
 Volume (6) Issue 5 (December 2021) (0202ديسمبر) 5 (العذد6المجلذ)

[16,17,18,19,20]. In this research, introduced a new effective mechanism and

described as bellow.

4.1 FRAMEWORK

This mechanism plan relies mainly on integrating both (forwarding and delay

slots operations) as explained in part (3.2) and (3.3) is performed to achieve an

outcome in improving the accuracy of the dynamic branch prediction, and thus

avoiding branch misprediction penalty. The general form for this mechanism

illustrated in figure (3).

Predicting whether the majority of branches are taken or not, it will be very

useful as proved in the most pervious solutions. The developed compiler does

this software mechanism, using intelligent compiler, they can also be done at the

time of execution. Emphasis has been placed on high-use barrel techniques

(being closer to the translator). We can say that, to avoid the Branch

Misprediction Penalty, we need the following compound mechanism to achieve

the best possible results:

- Forwarding whenever possible to handle data hazards without

incurring any delays.

- If it's not sufficient, the compiler automatically performs a

supporting operation by

 employing branch delay slots.

- You may handle jumps either in the same way as branches.

Ali Hudoud

824
 Journal of Alasmarya University: Basic and Applied Sciences الأساسية والتطبيقيةمجلة الجبمعة الأسمرية: العلوم

Figure (3) overall format of the research plan

4.2 PERFORMANCE MEASURES

In this research, the following factors has been adopted as criteria for demonstrating the

importance of this mechanism in improving computer performance by improving these

factors:

- Clock Cycle Per Instruction (CPI), the closer the CPI value to 1, the better the pipeline

system works and so we get the higher performance speed.

- Number of stalls in the following cases:

* Branch Taken Stalls

* Branch Misprediction Stalls.

Its possibility to add another standard, which is structural hazard.

5 RESULTS AND DISCUSSION

In the following experiment a program was used containing 140-byte code size.

Where:

EB = Enable BTB.

EF = Enable Forwarding.

EDS = Enable Delay Slots.

SS = Structural Stalls

BTS = Branch Taken Stalls

BMS = Branch Misprediction Stalls

Combining the Forwarding with Delay Slots Operations to Avoid the Branch Misprediction Penalty in

Superscalar Processors

825
 Volume (6) Issue 5 (December 2021) (0202ديسمبر) 5 (العذد6المجلذ)

Table 1. Enable BTB and forwarding factors Table 2. enable delay slots and forwarding factors

Config

Exec

Stalls

 EB

&

EF

428 cycles 0 SS

371 inst 2 BTS

1.154 CPI

 2 BMS

Table 3. enable only delay slots

Config

Exec

Stalls

EDS

59 cycles 0 SS

35 inst 0 BTS

1.686 CPI

 0 BMS

From the above three tables, it is noted that when the forwarding and delay slots factors are

used together, better results are obtained than using only delay slots. We can say that these

results may have a small change when we use another model program, but this result shows

that our new mechanism of combining the forwarding and delay slots operations is the best

solution as it prevents control hazard that occurs during the dynamic branch prediction. Why

did we say that the result in table (2) better than the results in table (3)? Because the results in

table (2) (59 cycles) i.e. less execution time than table (3), and CPI in table (2) is closed to 1,

i.e. more perfect result. These results, which were obtained as shown in Table (3) values of

(SS, BTS, BMS) after combining two operations, and which clearly demonstrated the

effectiveness of this mechanism in which the combining of both delay slots and forwarding

operation, and that's where we get a very positive result by completely avoided any branch

misprediction penalty as indicated by the value of BMS in the same table.

6 CONCLUSIONS

Forwarding and delay slots operations were used together to avoid occurrence of branch

misprediction penalty that occur due to control hazard between instructions of certain

program. This technique produces excellent results as the occurrence of control hazard with a

high degree of reliability is obtained. Also, the mechanism of this method does not work only

for superscalar processors but also it can work on all types of processors that operate on the

pipeline system. In future work, studying the effectiveness of this mechanism is the utilization

Config

Exec

Stalls

EF

&

EDS

40 cycles 0 SS

35 inst 0 BTS

1.43 CPI

 0 BMS

Ali Hudoud

826
 Journal of Alasmarya University: Basic and Applied Sciences الأساسية والتطبيقيةمجلة الجبمعة الأسمرية: العلوم

of cash memory, as well as using the fusion mechanism in this research to improve how this

mechanism is more ideal and to avoid the floating-point operation problem.

7 References

[1] Ali S. Al-Khalid, Safaa S. Omran. August 2020, Hybrid branch Prediction for pipelined

MIPS processor, Vol. 10, No. 4.

[2] Jurij Silc, Theo Ungerer & Borut Robic, 2007, Dynamic branch prediction and control

speculation.

[3] Cong Thuan Do, Hong Jun Choi, Dong Oh Son, Jong Myon Kim & Cheol Hong Kim.

2014,

 NTB Branch Predictor: Dynamic Branch Predictor For High-Performance Embedded

Processors.

[4] DR A. P. Shanthi, Handling Control Hazards.

[5] Charles Price. 1995, MIPS IV Instruction Set Revision 3.2.

[6] Yihui He , Han Wan, Bo Jiang and Xiaopeng Gao. A Method to Detect Hazards in

Pipeline Processor, MATEC Web of Conferences 139, 00085 (2017).

[7] S.A.Hudoud and A.M.Mosbah. 2014, Limiting The Data Hazards by Combining The

Forwarding with Delay Slots Operations to Improve Dynamic Branch Prediction in

Superscalar Processor.

[8] David J.Lilja. Reducing the branch penalty in pipelined processors.

[9] M.S. Schmalz. Organization of Computer Systems.

[10] Harich Patil and Joel S. February 2000, Emer.Combing Static and Dynamic Branch

Prediction to Reduce Destructive Aliasing.

[11] Gurpur M. Prabhu. Computer architecture tutorial

[12] JAMES E. SMITH, and GURINDAR S. SOHI. The Microarchitecture of Superscalar

Processors, IEEE.

[13] David Money Harris and Sarah L. 2013, Harris.Digital Design and Computer

Architecture (second edition).

[14] Arthur Perais. 2016, Increasing the performance of superscalar processors through

value

prediction.

[15] Craig Zilles and Gurindar Sohi. July, 2001, Execution-based Prediction Using

Speculative Slices.

[16] Ali S. Al-Khalid, Safaa S. Omran. August 2020 , Hybrid branch prediction for pipelined

MIPS processor Vol. 10, No. 4, pp.3476~3482.

[17] L. Hennessy and D. Patterson, 2019,Computer Architecture. A Quantitative Approach.

[18] Arthur Perais . Mar 2015, Increasing the performance of superscalar processors through

value prediction.

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
http://www.cs.iastate.edu/~prabhu

Combining the Forwarding with Delay Slots Operations to Avoid the Branch Misprediction Penalty in

Superscalar Processors

827
 Volume (6) Issue 5 (December 2021) (0202ديسمبر) 5 (العذد6المجلذ)

[19] Jimenez DA, Lin C. Neural methods for dynamic branch prediction. ACM Transactions

on Computer Systems, ACM Transactions on Computer Systems, Vol. 20, No. 4,

November 2002..

[20] Joan Puiggali , Boleslaw K.Szymanski, Teo Jové , Jose L Marzo. Dynamic Branch

Speculation in a Speculative Parallelization Architecture for Computer Clusters.

دمج عمليتي التأخير الزمني والإرسبل لتجنب حذوث عواقب الخطأ التنبئي لأوامر القفز في

 المعبلجبت الفبئقة

 علي حذود

 ali.amary81@yahoo.comٌىيثياجاٍؼح اىضيرّ٘حمييح اىْٖذسح، اىحاسة الآىي، قس ،

 الملخص

ُ اسرخذاً ّظاً الاّث٘ب في اّظَح اىَؼاىجاخ اىحذيثح سإَد اىي حذ مثيش في إ

ذحسيِ اداء ٕزٓ اىَؼاىجاخ ٗىزىل ٍِ خلاه تضيادج سشػرٖا تشنو أمثش تنثيش ٍِ ري

، ٗىنِ ٕزٓ 1يؤٗه اىي قثو حيث اُ ٍؼذه ذْفيز الاٗاٍش في اىذٗسج اىضٍْيح اى٘احذج

اىرقْيح لا ذخي٘ا ٍِ ػذج ٍشامو ٍصاحثح ىٖزٓ اىؼَييح، أحذ ٕزٓ اىَشامو ٕي اىؼ٘اقة

ػْذ اسرخذاً اىيح اىرْثؤ اىري يرٌ ٍِ خلاىٖا ذ٘جئ ػْ٘اُ ئاىْاذجح ػِ اىرْثؤ اىخاط

% 02اىقفض ٍِ ّقطح صٍْيح ٍا اثْاء ذْفيز اىؼَيياخ اىي ّقطح أخشي حيث أُ ح٘اىي

أي أٍش ٗاحذ ٍِ تيِ خَسح أٗاٍش يرٌ ذْفيزٕا في أي تشّاٍج ٕي أٗاٍش قفض ٗاىري

ذ٘جٔ تأىيح ػَو ٍؼيْح ىي٘ص٘ه اىي اىٖذف اىَطي٘ب، ٗاىري ذقً٘ تؼَييح ٍقاطؼح ذذفق

ذْفيز الاٗاٍش اىري ذَش خلاه ٕزا الاّث٘ب. ْٕاك ػذج ٍحاٗلاخ ذٌ اىقياً تٖا في

فض اىذيْاٍيني ٗذ٘قغ اىرحنٌ " ٗ " ٍرْثأ قفض اه)اُ ذي دساساخ ساتقح ٍْٖا" ذْثأ اىق

 تي(: ٍرْثأ اىقفض اىذيْاٍيني لأداء اىَؼاىجاخ اىَذٍجح.

في ٕزٓ اى٘سقح قَْا ترقذيٌ اىيح جذيذج ذؼرَذ ػيي دٍج ػَييري اػادج اىر٘جئ ٗاىرأخيش

اىخاطئ في في اىَ٘اقغ اىشاغشج ىرجْة امثش قذس ٍَنِ ٍِ فقذ ىيضٍِ ّريجح اىرثثؤ

 اىَؼاىجاخ اىفائقح.

 الكلمبت الذالة:

 .ػ٘اقة اىرْثؤ اىخاطئ
 .دٗسج ساػح ىنو أٍش

 .ٍخاطش اىرحنٌ
 .اىرْثؤ اىذيْاٍيني ىيفشع

 .ٍييُ٘ أٍش ىنو ثاّيح

 ali.amary81@yahoo.com :*اىثشيذ الإىنرشّٗي ىيثاحث اىَشاسو

